• Lithopanspermia

    Lithopanspermia, sometimes referred to as interstellar panspermia, is a version of the panspermia hypothesis in which it is argued that impact-expelled rocks...

    Read More
  • Ballistic Panspermia

    Ballistic panspermia, sometimes referred to as interplanetary panspermia, is a version of the panspermia hypothesis in which it is argued that...

    Read More
  • Directed Panspermia

    Directed Panspermia suggests that the seeds of life may have been purposely spread by an advanced extraterrestrial civilization, or can be spread...

    Read More
  • Extremophiles

    An extremophile (from Latin extremus meaning "extreme" and Greek philiā (φιλία) meaning "love") is an organism that thrives in and even may...

    Read More
  • Videos

    Videos on the subject of panspermia...

    Read More

Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

panspermia microbes Mars meteorite ALH84001 Antarctica lithopanspermia directed panspermiaA meteorite blasted off from the surface Mars about 15 million years ago was found in Antarctica in 1984 by a team of scientists on an annual United States government mission to search for meteors. The meteor was named Allan Hills 84001 (ALH84001). In 1996 ALH84001 was shown to contain structures that may be the remains of terrestrial nanobacteria. The announcement, published in the journal Science by David McKay of NASA, made headlines worldwide and prompted United States President Bill Clinton to make a formal televised announcement marking the event and expressing his commitment to the aggressive plan in place at the time for robotic exploration of Mars. Several tests for organic material have been performed on ALH84001 and amino acids and polycyclic aromatic hydrocarbons (PAH) have been found. However, most experts now agree that these are not a definite indication of life, but may have instead been formed abiotically from organic molecules or are due to contamination from contact with Antarctic ice. The debate is still ongoing, but recent advances in nanobe research has made the find interesting again.

The announcement of the discovery of evidence of life on ALH84001 sparked a surge in support for the theory of panspermia. People began to speculate about the possibility that life originated on Mars and was transported to Earth on debris ejected after major impacts (see ballistic panspermia).

On April 29, 2001, at the 46th annual meeting of the International Society for Optical Engineering (SPIE) in San Diego, California, Indian and British researchers headed by Chandra Wickramasinghe presented evidence that the Indian Space Research Organisation had gathered air samples from the stratosphere that contained clumps of living cells. Wickramasinghe called this "unambiguous evidence for the presence of clumps of living cells in air samples from as high as 41 kilometers, well above the local tropopause, above which no air from lower down would normally be transported". A reaction report from NASA Ames doubted that living cells could be found at such high altitudes, but noted that some microbes can remain dormant for millions of years, possibly long enough for an interplanetary voyage within a solar system.

On May 11, 2001, Geologist Bruno D'Argenio and molecular biologist Giuseppe Geraci from the University of Naples announced the finding of extraterrestrial bacteria inside a meteorite estimated to be over 4.5 billion years old. The researchers claimed that the bacteria, wedged inside the crystal structure of minerals, had been resurrected in a culture medium. They asserted that the bacteria had DNA unlike any on Earth and had survived when the meteorite sample was sterilized at high temperature and washed with alcohol. The bacteria were determined to be related to modern day Bacillus subtilis and Bacillus pumilus bacteria, but appear to be a different strain.

On April 21, 2008, renowned British astrophysicist Stephen Hawking spoke about panspermia during his "Why We Should Go Into Space" lecture for NASA's 50th Anniversary lecture series at George Washington University.

In a virtual presentation on Tuesday, April 7, 2009, Stephen Hawking discussed the possibility of building a human base on another planet and gave reasons why alien life might not be contacting the human race, during his conclusion of the Origins Symposium at Arizona State University. Hawking also talked about what humans may find when venturing into space, such as the possibility of alien life through the theory of panspermia, which says that life in the form of DNA particles can be transmitted through space to habitable places.

Stephen Hawking - How Did Life Begin?

Stephen Hawking explains how life may have began on Earth, and turns to evolution to determine what extraterrestrial life may look like.

More Videos